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chapter 6.  

Mycotoxins and human health

Summary

Mycotoxins have been investigated 
in relation to a wide range of adverse 
human health effects, but the evidence 
for all but a small number of associations 
is limited. Thus, the full impact on human 
health of the widespread exposure 
to mycotoxins remains to be defined. 
The main exception is for aflatoxins; 
epidemiological, experimental, and 
mechanistic studies have contributed 
to establishing aflatoxins as a 
cause of human liver cancer, with a 
particularly elevated risk in people 
chronically infected with hepatitis B 
virus. In addition, acute aflatoxicosis 
after exposure to high dietary toxin 
levels has been demonstrated. The 
impairment of child growth by aflatoxin 
exposure early in life remains an 
important subject of study. More 
information is also required on the 
potential immune effects of aflatoxins, 

especially in vulnerable populations. 
For fumonisins, studies indicate a 
possible role in oesophageal cancer 
and in neural tube defects, although 
no definitive conclusions can be 
drawn at present. For deoxynivalenol 
and other trichothecenes, exposure 
has been linked to acute poisoning 
outbreaks in large numbers of 
subjects. For ochratoxin A and 
zearalenone, the human health 
effects remain undefined. The limited 
tools available to accurately assess 
human exposure to mycotoxins and 
the relative paucity of epidemiological 
studies need to be addressed if the full 
extent of the adverse effects of these 
common dietary contaminants is to be 
understood and adequate public health 
measures taken. In this respect, newly 
established biomarkers of exposure at 
the individual level are proving valuable 
in improving exposure assessment in 
epidemiological studies.

1. Introduction

This chapter covers the effects on 
human health of the major mycotoxins 
occurring in foods. This chapter also 
includes information on mechanisms 
of action of mycotoxins in humans 
where relevant to the adverse health 
effects under consideration. No 
attempt is made at a comprehensive 
review, but at appropriate points we 
refer to more extensive accounts.

The major source of human 
exposure to mycotoxins is consump-
tion of contaminated foods. Exposure 
is highest when those foods are dietary 
staples, such as maize, groundnuts, or 
various other cereals. Exposures to 
metabolites or parent toxins may also 
occur by consumption of contaminated 
milk and milk products. We covered 
the dietary sources of mycotoxin 
exposure in some detail in Chapter 1. 
In this chapter, we also consider 
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occupational exposures in granaries 
and other food and feed processing 
due to mycotoxins contained in dusts 
from contaminated grains. The specific 
effects due to particular mycotoxins are 
discussed in Sections 2–6. Additional, 
more general information on health 
problems associated with mycotoxins 
in grain dusts is covered in Section 7.

The human health effects 
considered here encompass acute 
poisoning, cancer, other chronic 
diseases, and biological effects, 
including growth impairment and 
immunomodulation.

One of the major limitations 
in assessing the effects of 
mycotoxins on health has been 
the inability to accurately assess 
exposure at the individual level. 
The development of validated 
biomarkers for aflatoxins has greatly 
assisted epidemiological studies and 
allowed an evaluation of aflatoxins 
in relation to cancer, aflatoxicosis, 
child growth impairment, and immune 
effects (see Wild and Gong, 2010). 
Development of validated biomarkers 
for fumonisins (Wild and Gong, 2010; 
Van der Westhuizen et al., 2011) 
and deoxynivalenol (Meky et al., 
2003; Turner et al., 2008a, 2008b, 
2008c) also offers promise for future 
studies of the human health effects 
of these mycotoxins. However, 
the biomarker field for mycotoxins 
also offers a cautionary tale: an 
unvalidated biomarker for ochratoxin 
A in plasma or serum has been 
used to assess dietary exposure 
to this toxin, but subsequent 
careful duplicate diet studies have 
shown that this biomarker does not 
reflect intake at the individual level 
(Gilbert et al., 2001). Nevertheless, 
the availability of biomarkers to 
measure exposure to mycotoxins 
provides new opportunities for more 
systematic monitoring of exposure 
in populations as well as improved 
etiological studies.

2. Aflatoxins

Aflatoxins are produced in a wide 
range of commodities by Aspergillus 
flavus and A. parasiticus, and 
occasionally other Aspergillus species. 
The commodities most at risk are 
maize and groundnuts in tropical areas 
(see Chapter 1).

2.1 Mechanisms

Until recently, attention on af-
latoxins has been focused on 
their carcinogenic effects. For 
more detailed information, see the 
extensive reviews in IARC (2002), 
WHO (2002), and Wild and Gong 
(2010). Consideration is usually given 
to the naturally occurring aflatoxins 
in the diet – aflatoxins B1 (AFB1), B2 
(AFB2), G1 (AFG1), and G2 (AFG2) – 
or to AFB1 alone, or more rarely to 
aflatoxins M1 (AFM1) and M2 (AFM2), 
the hydroxylation products of AFB1 
and AFB2, respectively, that occur 
in milk. This distinction between the 
type of aflatoxin exposures under 
consideration is important but is 
rarely considered, particularly when 
studying adverse health effects other 
than cancer.

Given the focus on mutagenicity 
and carcinogenicity, most studies 
have been of AFB1, which, due to the 
presence of a double bond at the 8,9 
position, can be metabolized to the 
reactive AFB1-8,9-epoxide, which 
binds to cellular macromolecules 
including DNA (for more detail, see 
Wild and Turner, 2002). The major 
DNA adduct is AFB1-N7-guanine, and 
this pro-mutagenic lesion commonly 
results in a G → T transversion 
mutation. AFB1-N7-guanine can 
also be detected in the urine and 
used as an exposure biomarker in 
epidemiological studies. AFB2 and 
AFG2 are generally considered to be 
far less biologically active due to the 
absence of the 8,9 double bond. AFG1 
can be bioactivated to the 8,9-epoxide 

but is less mutagenic than AFB1, 
reflecting the stearic chemistry of the 
respective epoxides; the AFB1-8,9-
epoxide intercalates more readily into 
the DNA double helix than does the 
equivalent AFG1 molecule, resulting in 
higher levels of DNA adduct formation 
for a given dose. Minimal information 
exists about the importance of 
the reactive epoxide for the non-
mutagenic actions of aflatoxins or 
indeed about the biological effects of 
aflatoxins independent of metabolic 
activation to the 8,9-epoxide. Unlike 
AFM2, AFM1 contains an 8,9 double 
bond and hence can be bioactivated 
to the reactive 8,9-epoxide.

A significant observation in 
terms of aflatoxin carcinogenicity is 
the association between exposure 
and a specific mutation in the TP53 
tumour suppressor gene in liver 
cancer (hepatocellular carcinoma 
[HCC]). In HCC tumours from patients 
who are from regions endemic for 
aflatoxin and who are chronically 
infected with hepatitis B virus (HBV), 
a high prevalence exists of a specific 
missense mutation in the gene, 
namely an AGG → AGT (Arg → Ser) 
point mutation at codon 249 (codon 
249ser) (IARC, 2002; Hussain et al., 
2007). This mutation is extremely rare 
in HCC associated with HBV in areas 
where aflatoxins are uncommon, 
but it is as yet unclear whether HBV 
infection influences occurrence of 
the mutation in HCC from aflatoxin-
endemic areas.

The major human cytochrome 
P450 (CYP) enzymes involved in 
aflatoxin metabolism are CYP3A4, 
3A5, and 1A2, and the predominant 
site of bioactivation is the liver,  
although CYP3A4 expression in 
the human intestine means that 
metabolism may also occur in that 
organ (Wild and Turner, 2002; 
Kamdem et al., 2006; Thelen and 
Dressman, 2009). The contribution of 
these enzymes to AFB1 metabolism in 
exposed people will depend on both 
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the affinity and level of expression 
of the different enzymes; CYP3A4 
appears to be the most important in 
generating the exo-8,9-epoxide, and 
the relative contribution of CYP3A5, 
which also produces the exo-8,9-
epoxide, varies by individual (Kamdem 
et al., 2006). In fact, CYP3A5 
expression is polymorphic and 
varies by ethnic group; for example, 
40% of African Americans show no 
expression due to identified genetic 
polymorphisms. Such polymorphisms 
may affect sensitivity to the toxic 
effects of aflatoxins (Wojnowski et al., 
2004). CYP1A2 leads predominantly 
to formation of the hydroxylated AFM1 
metabolite and the AFB1-endo-8,9-
epoxide, which does not form DNA 
adducts.

Given the fact that aflatoxin is 
known to cross the placenta, it is 
also of interest that CYP3A7, a major 
CYP in human fetal liver, can activate 
AFB1 to the 8,9-epoxide (Kamataki 
et al., 1995; Wild and Turner, 2002). 
Indeed, aflatoxin adducts have been 
identified in cord blood (Wild et al., 
1991; Turner et al., 2007), indicating 
that environmental levels of aflatoxin 
are bioactivated to the reactive 
metabolites in utero.

Detoxification of the aflatoxin exo- 
and endo-epoxides occurs mainly 
through glutathione S-transferase-
mediated conjugation to reduced 
glutathione (Guengerich et al., 1998). 
The epoxides can also undergo rapid 
non-enzymatic hydrolysis to AFB1-
8,9-dihydrodiol, which in turn forms 
a dialdehyde phenolate ion with an 
opened ring. The dihydrodiol can 
react with the ε-amino group of lysine 
in serum albumin to form aflatoxin–
albumin adducts, which are often used 
as exposure biomarkers (Wild and 
Gong, 2010). In a further metabolic 
step, aflatoxin aldehyde reductase 
catalyses the NADPH-dependent 
reduction of the dialdehyde phenolate 
ion to a dialcohol (Johnson et al., 
2008).

An understanding of the 
metabolism, DNA damage, and 
induction of mutations in people 
exposed to aflatoxins in the diet 
has contributed to the overall 
assessment of their adverse health 
effects (Groopman et al., 2008; Wild 
and Gong, 2010). The major health 
effects linked to aflatoxin exposure 
are described briefly here.

2.2 Aflatoxicosis

Sporadic historical accounts of 
human poisoning with aflatoxins 
were reported, but these early 
studies were not definitive in 
assigning causation (Hall and Wild, 
1994). In 1974, hepatitis cases due 
to aflatoxicosis in Western India 
(Krishnamachari et al., 1975) were 
associated with consumption of 
maize contaminated with A. flavus. 
Patients exhibited jaundice preceded 
by fever, vomiting, and anorexia, with 
subsequent progression to ascites 
and oedema in lower extremities. In 
maize from households where cases 
occurred, the aflatoxin levels were 
extremely high, 6.25–15.6 mg/kg, 
and the estimated daily ingestion of 
aflatoxins was 2–6 mg in adults.

In Kenya in 1981, another 
outbreak of acute hepatitis was 
associated with aflatoxin poisoning 
(Ngindu et al., 1982). Patients were 
diagnosed with jaundice preceded 
by abdominal discomfort, anorexia, 
general malaise, and low-grade 
fever; tachycardia and oedema 
were also observed. Maize from two 
affected households contained up 
to 3.2 mg/kg and 12 mg/kg AFB1. 
An additional report came from an 
incident in Malaysia in 1988, where 
13 children died from acute hepatic 
encephalopathy after consuming 
noodles (Lye et al., 1995).

In 2004, well-documented 
cases of aflatoxicosis occurred in 
Kenya, close to the locality of the 
cases reported in 1981 (Azziz-

Baumgartner et al., 2005; Lewis et 
al., 2005). These outbreaks resulted 
in several hundred deaths associated 
with consumption of maize heavily 
contaminated with aflatoxin. A case–
control study of aflatoxicosis, defined 
as acute jaundice of unknown origin, 
found that aflatoxin levels in foods 
from affected households were 
much higher than those in foods 
from unaffected households. Similar 
differences between cases and 
controls were found when aflatoxin 
biomarker levels in blood were 
examined (Azziz-Baumgartner et al., 
2005; McCoy et al., 2008).

The association of aflatoxin 
contamination of maize with acute 
hepatitis and aflatoxicosis is well 
supported by the evidence, most 
notably by the observations in Kenya. 
It is of interest that aflatoxicosis has 
been reported only in communities 
where maize is the dietary staple. 
This reflects both high levels of 
aflatoxins in maize and high daily 
intakes (300–500 g) of this staple 
commodity. In addition, however, the 
role of co-contaminating mycotoxins, 
notably fumonisins, has not been 
assessed, and these may contribute 
to the acute toxicity observed.

The level of aflatoxin intake 
associated with aflatoxicosis and 
death has been estimated (Wild 
and Gong, 2010). The intake of 
total aflatoxins estimated to result 
in a risk of fatality was > 1 mg/day, 
i.e. > 20 µg/kg body weight (bw)/
day in adults. It was considered that 
aflatoxicosis without fatality may 
occur with 5–10-fold lower doses. 
Further estimates suggested that 
the total intake of AFB1 associated 
with half the exposed people dying 
(i.e. the median lethal dose [LD50]) 
would be 0.54–1.62 mg/kg bw, a 
similar magnitude to the LD50 value 
reported for rabbits, cats, dogs, pigs, 
and baboons (Wild and Gong, 2010). 
Therefore, daily exposure to staple 
foods consumed at several hundred 
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grams per day and contaminated with 
≥ 5000 µg/kg of aflatoxins may lead to 
death in humans. Daily consumption 
of foods with > 1000 µg/kg may lead 
to aflatoxicosis.

It is of great concern that these 
contamination levels in maize that 
are associated with aflatoxicosis 
and death are only 10–100 times 
the levels that occur regularly in 
many parts of sub-Saharan Africa. 
Despite the demonstration that heavy 
contamination of maize with aflatoxins 
does lead to aflatoxicosis and death, 
these outbreaks continue to occur. 
Thus, in affected parts of the world, 
there is an urgent need for a rapid 
field test that, as part of a preventive 
strategy, can detect dangerously high 
levels (e.g. > 1000 µg/kg) of aflatoxins 
in cereals and nuts, as well as an 
emergency response analogous 
to those in place for outbreaks of 
infectious diseases.

2.3 Liver cancer

The International Agency for 
Research on Cancer (IARC) has 
classified naturally occurring mixtures 
of aflatoxins as Group 1, carcinogenic 
to humans (IARC, 2002) (Table 6.1). 
Before the 1990s, most studies of 
aflatoxins and HCC were either 
ecological correlation studies or 
case–control studies. The ecological 
studies did not always consider 
infection with HBV and hepatitis C 
virus, had relatively crude estimates 
of aflatoxin intakes, and had limitations 
in diagnosis and registration of HCC 
cases. Despite this, most showed a 
positive correlation between estimated 
aflatoxin intakes and HCC rates in a 
given region (IARC, 1993, 2002).

Prospective cohort studies of 
improved design, begun in the late 
1980s and 1990s in South-East 
Asia, used biomarkers of exposure 
to both HBV and aflatoxins. These 
studies provided strong evidence of 
a more than multiplicative interaction 

between these two factors in relation 
to increased HCC risk (Qian et al., 
1994; Wang et al., 1996; IARC, 
2002). In a more recent follow-up of 
the cohort in Taiwan, China, Wu et al. 
(2009) conducted the largest nested 
case–control study to date and 
reported that the combined effect of 
AFB1 exposure and HBV infection 
was more consistent with an additive 
model than with the multiplicative 
one observed in the original report 
of Wang et al. (1996). However, 
after examining the plasma of HCC 
patients, cirrhosis patients, and 
controls for the TP53 gene mutation 
(codon 249ser; AGG → AGT), Kirk et 
al. (2005) showed that the increased 
risk associated with the presence 
of both the 249ser mutation and 
HBV infection was consistent with 
a multiplicative effect of exposure to 
aflatoxin and chronic HBV infection.

The HCC risk from exposure to 
aflatoxins in the absence of chronic 
HBV infection is difficult to assess 
in populations where HBV infection 
is widespread. A review by Omer 
et al. (2004) reported 1.7–3.4-
fold increased risks in individuals 
exposed to aflatoxins without 
chronic HBV infection. Wu et al. 
(2009) reported a similar magnitude 
of increased HCC risk in subjects 
positive only for aflatoxin exposure 
biomarkers, but occult HBV infections 
in some of the individuals in these 
studies cannot be ruled out.

The overall evidence from 
epidemiological studies shows a 
particularly elevated risk of HCC 
from aflatoxin exposure in individuals 
chronically infected with HBV 
and reasonable evidence that an 
increased risk also exists in individuals 
exposed to aflatoxins without chronic 
HBV infection. Given that > 350 million 
chronic HBV carriers exist worldwide, 
many living in aflatoxin-endemic 
areas, the need to reduce aflatoxin 
exposure remains highly relevant for 
cancer prevention.

2.4 Cirrhosis

To date, little information exists on 
the risk of liver cirrhosis in relation to 
aflatoxin exposure. A case–control 
study in The Gambia (Kuniholm et al., 
2008) reported that increasing lifetime 
groundnut intake (a surrogate for 
aflatoxin consumption) was associated 
with a significantly increased risk of 
cirrhosis, approaching 3-fold with the 
highest level of consumption. The 
presence of the codon 249ser mutation 
associated with aflatoxin was also 
associated with a similar magnitude of 
increased risk of cirrhosis. However, 
further studies are needed before 
any conclusions can be drawn about 
aflatoxin and cirrhosis. This is an area 
that merits more attention, given the 
large burden of cirrhosis worldwide.

2.5 Immune effects

The immunomodulatory effects of 
aflatoxins have been considered in 
experimental studies in cell models 
and animals as well as in observations 
of farm animals (IARC, 1993, 2002; 
WHO, 2002; Williams et al., 2004). 
However, only a few studies have 
considered the association between 
aflatoxin exposure and immune 
parameters in human populations. 
Two such studies have been reported 
from The Gambia (Allen et al., 1992; 
Turner et al., 2003). The first provided 
some evidence that children with 
higher aflatoxin exposure were more 
likely to have malaria parasitaemia, 
but no significant associations were 
observed with experience of malaria 
infection, antibody titre to asexual 
stages of Plasmodium falciparum, 
or lymphoproliferative responses. 
The second study investigated 
the effect of aflatoxin exposure on 
cell-mediated immunity (skin test), 
antibody titres (in response to rabies 
and pneumococcal vaccines), and 
salivary immunoglobulin A (IgA). No 
associations were found between 
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aflatoxin exposure and either the 
skin test or antibody titres, but higher 
aflatoxin exposure was associated 
with lower salivary IgA, suggesting 
that aflatoxin exposure could 
modulate mucosal immunity.

From Ghana, two studies have 
been reported that compared 
aflatoxin biomarker levels and 
subsets of peripheral blood cells in 
adults (Jiang et al., 2005, 2008). In 
the first, a higher aflatoxin biomarker 
level was associated with a lower 
percentage of CD3+ and CD19+ cells 
(B lymphocyte antigens) expressing 
the CD69+ activation marker and 
with lower percentages of CD8+ 
T cells expressing perforin and 
granzyme A. In the second study, a 
higher aflatoxin biomarker level was 
associated with lower percentages of 
CD8+ cells expressing perforin and 
of CD19+ cells expressing CD69+. 
In addition, HIV-positive individuals 
with higher aflatoxin biomarker levels 
had significantly lower percentages 
of CD4+ T regulatory cells and 
naive CD4+ T cells compared with 
HIV-positive individuals with lower 
aflatoxin biomarker levels.

Overall, the studies of im-
munomodulation do not permit 
conclusions to be drawn about 
the impact of environmental levels 
of aflatoxin exposure on human 
immunity and susceptibility to 
infectious disease. Nevertheless, 
the data suggest that immune 
parameters could be affected in 
populations exposed chronically to 
aflatoxins. If this were to be proven, 
the impact would add greatly to the 
burden of disease related to cancer 
and aflatoxicosis.

2.6 Child growth impairment

Children are chronically exposed 
to high levels of aflatoxins in areas 
where food contamination is en-
demic. Exposure begins in utero 
and continues throughout early life, 

although the breastfeeding period 
provides some respite from high 
daily intakes. Studies in several 
animal species indicate that aflatoxin 
exposure can severely affect growth 
and development. However, until 
recently such effects had not been 
considered in human populations.

Early studies explored the link 
between aflatoxin exposure and 
kwashiorkor (Hendrickse et al., 1982), 
but no firm conclusions could be 
drawn due to various weaknesses in 
study design (Hall and Wild, 1994). 
A study in rural Kenya in the 1980s 
linked aflatoxin detection in mothers’ 
blood with significantly lower birth 
weights of female babies (De Vries 
et al., 1989). A more recent study in 
Kisumu District, Kenya, showed a 
significantly greater prevalence of 
wasting (low weight for height) in 
children fed cereals with high aflatoxin 
contamination, compared with those 
whose cereals had lower aflatoxin 
levels (Okoth and Ohingo, 2004).

A series of studies has been 
conducted in West African children 
exposed to aflatoxins early in life. In the 
first of these, a cross-sectional study of 
children aged 1–5 years in Benin and 
Togo, a striking inverse association 
was found between aflatoxin–albumin 
adduct level and growth (Gong et 
al., 2002). In a subsequent 8-month 
longitudinal study, a strong negative 
correlation was observed between 
aflatoxin–albumin adduct level and 
height increase (Gong et al., 2004). 
The highest quartile of aflatoxin–
albumin adducts was associated with 
a mean reduction of 1.7 cm in height 
increase compared with the lowest 
quartile. Recently, an association 
was also found between exposure to 
aflatoxin in utero and impaired growth 
during the first year of life in children in 
The Gambia (Turner et al., 2007). This 
finding suggests that the consumption 
of aflatoxin-contaminated food during 
pregnancy may have effects on the 
child after birth.

In summary, growth faltering in 
West African children may occur at the 
time of introduction of solid foods, when 
high exposure to aflatoxin occurs. The 
dose–response relationships between 
aflatoxin biomarker levels and growth 
effects are also consistent with a 
causal effect. However, at this time 
other confounding factors cannot be 
excluded as explanations for these 
associations. The mechanisms of 
action by which aflatoxin may exert 
an effect on growth are currently 
unknown, although the possibility of 
a compromised intestinal integrity, 
through altered barrier function as a 
consequence of endothelial cell toxic-
ity or immune suppression, is a valid 
hypothesis that should be explored 
further (Wild and Gong, 2010).

In areas where aflatoxin is 
common, namely sub-Saharan 
Africa and South Asia, 7.1 million 
children died under the age of 5 
years in 2008. It is estimated that 
about 50% (3.55 million) of these 
deaths are related to undernutrition 
and poor growth (Black et al., 2003). 
If aflatoxin exposure were to be 
responsible for even a few per cent 
of these deaths, the total number 
would be tens of thousands per year.

2.7 Occupational exposures

AFB1 concentrations of up to 
612 μg/kg have been reported in 
airborne dusts during the handling of 
contaminated maize and groundnuts 
(Miller, 1994a; Sorenson, 1999). 
Most aflatoxin was contained in the 
< 7 μm and 7–11 μm particle size 
ranges. In grain dusts, a substantial 
fraction of the aflatoxin is contained 
in the spores of A. flavus and A. 
parasiticus (Miller, 1994a, 1994b).

Retrospective studies of feed 
processing workers in Denmark 
reported elevated risks of HCC, gall 
bladder cancer, and extrahepatic 
bile duct cancer in this population 
exposed occupationally, with a 
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2-3- fold increased risk after a 10-year 
latency period. Inhalation exposure 
to aflatoxin (170 ng/day) was reported 
to be the most likely explanation. 
Some evidence of elevated aflatoxin 
biomarker levels related to the 
handling of contaminated feeds was 
also reported (Olsen et al., 1988; 
Autrup et al., 1991, 1993). A risk 
assessment model suggested that 
exposure to AFB1 in airborne dust 
may pose little significant risk during 
maize harvest and elevator loading/
unloading but a relatively high risk 
during swine feeding and storage bin 
cleaning (Liao and Chen, 2005).

3. Fumonisins

Fumonisins occur in maize and, 
much less commonly, other cereals, 
as a result of infection with Fusarium 
verticillioides and related species (see 
Chapter 1). An Environmental Health 
Criteria document for fumonisin B1 
(FB1) has been published (WHO, 
2000a), and the Joint FAO/WHO 
Expert Committee on Food Additives 
(JECFA) has established a provisional 
maximum tolerable daily intake 
(PMTDI) of 2 μg/kg bw/day for FB1, 
FB2, and FB3 alone or in combination 
(WHO, 2001, 2002). This PMTDI is 
based not on tumorigenicity data 
but on the no-observed-effect level 
(NOEL) for nephrotoxicity in rodents 
of 0.2 mg/kg bw/day, divided by a 
safety factor of 100 (WHO, 2001).

3.1 Mechanisms

Fumonisins may exert their biological 
effects through several different 
mechanisms. FB1 genotoxicity is 
somewhat unclear; negative results 
were obtained from several ge-
notoxicity assays, but other in vitro 
studies reported that FB1 induced 
micronuclei and chromosomal 
aberrations (Ehrlich et al., 2002; 
IARC, 2002). The DNA damage may 
be a result of stimulation of oxidative 

damage and lipid peroxidation 
(Stockmann-Juvala and Savolainen, 
2008). This finding is consistent with 
increased oxidative DNA damage 
and malondialdehyde adducts in 
rat liver and kidney (Domijan et al., 
2006) and lipid peroxidation (Abel 
and Gelderblom, 1998) in vivo after 
FB1 treatment. Fumonisin-induced 
carcinogenesis in the liver proceeds 
through initiation and promotion 
stages in a manner similar to that for 
genotoxins and is dependent on the 
dose and time of exposure (Gelderblom 
et al., 2008a). Nevertheless, no 
evidence has been found for direct 
interaction of fumonisin with DNA 
nor for its metabolism to a reactive 
metabolite (WHO, 2001; IARC, 2002).

FB1 disrupts de novo sphingolipid 
biosynthesis by inhibition of the en-
zyme ceramide synthase (Merrill 
et al., 2001), resulting in many 
effects on signalling pathways and 
cell functions that are dependent 
on ceramide, sphingoid bases, 
sphingoid base 1-phosphates, and 
complex sphingolipids (Dragan et 
al., 2001; Merrill et al., 2001). These 
include effects on apoptosis and 
mitosis, thus potentially contributing 
to carcinogenesis through an altered 
balance of cell death and replication 
(Stockmann-Juvala and Savolainen, 
2008). Disruption of sphingolipid 
metabolism leads to changes in the 
sphinganine-to-sphingosine ratio, 
with increased sphinganine tissue 
concentrations, which correlate 
closely with the in vivo toxicity and 
carcinogenicity of fumonisins (Riley 
et al., 2001). Such changes were 
demonstrated in rat liver and mouse 
kidney at carcinogenic doses of FB1 
(Voss et al., 2002). Disruption of 
cholesterol, phospholipid, and fatty 
acid synthesis and interaction with 
ceramide have been proposed to play 
key roles in the differential growth 
patterns of altered hepatocytes 
during cancer promotion in the liver 
(Gelderblom et al., 2008b).

The role of fumonisins in im-
munomodulation has also been 
highlighted through changes in 
cytokine levels in vitro and in vivo in 
animal models (Sharma et al., 2000) 
and effects on antibody vaccine 
responses in pigs exposed to FB1 
(Taranu et al., 2005; Stockmann-
Juvala and Savolainen, 2008).

Animal experiments have shown 
that fumonisins are rapidly excreted 
unmetabolized from the gut (Shephard 
et al., 1994a, 1994b; Martinez-
Larranaga et al., 1999). It is not known 
whether the gut microflora metabolize 
fumonisins, although hydrolysed FB1 
has been detected in faeces of vervet 
monkeys (Shephard et al., 1994a, 
1994b), pigs (Fodor et al., 2008), and 
ruminants (WHO, 2000b). Studies 
using radiolabelled fumonisins failed 
to show any metabolism by primary 
hepatocytes or hepatic esterases and 
lipases (Cawood et al., 1994).

Analyses of human faeces has 
revealed unmetabolized FB1 and 
FB2 (Chelule et al., 2000, 2001). The 
presence of FB1, FB2, and FB3 in 
human hair has been demonstrated, 
suggesting that fumonisins are 
absorbed from the gut after ingestion 
of contaminated maize (Sewram et 
al., 2003). More recently, FB1 in urine 
has been reported in individuals 
consuming large amounts of 
maize (Gong et al., 2008). Direct 
evidence therefore exists that 
human populations are exposed to 
fumonisins after absorption, although 
the actual levels and the possible risk 
this poses still need to be quantified.

Probable daily intake values 
of fumonisins, determined using 
a validated dietary assessment 
tool, showed that intakes of up to 
10 times the PMTDI can occur in 
individuals in a rural, subsistence 
farming community where maize is 
the main dietary staple (Burger et 
al., 2010). Drinking home-brewed 
maize beer further increased the 
level of exposure. Estimates of daily 
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fumonisin intake in rural communities 
in Guatemala (Torres et al., 2007) 
have also shown that total fumonisin 
intake can potentially be > 10 times 
the recommended PMTDI.

3.2 Acute poisoning

No confirmed cases have been 
reported of acute human poisoning 
due to fumonisin exposure. Part of the 
difficulty in discerning a specific effect 
of fumonisins in acute poisoning is their 
co-occurrence with other mycotoxins, 
notably aflatoxins and trichothecenes. 
For example, one poisoning outbreak 
in India occurred where fumonisin 
contamination of foods was reported, 
notably in unleavened bread prepared 
from mouldy sorghum or maize, and 
where symptoms were characterized 
by abdominal pain, borborygmi, and 
diarrhoea (Bhat et al., 1997). However, 
assays of other mycotoxins potentially 
present were not reported.

An outbreak of human intoxication 
related to the consumption of 
maize gruel prepared from mouldy 
maize powder occurred in Guangxi 
Province, China, in 1989 (Li et al., 
1999). In this case, co-occurrence 
with trichothecenes was found, and 
based on an average maize meal 
intake of 200 g/person (60 kg bw) per 
day, the total daily dietary intake of 
deoxynivalenol and FB1 was 80 µg/kg 
bw and 2.3 µg/kg bw, respectively.

These incidents highlight the 
need for comprehensive analyses of 
mycotoxins in contaminated foods 
and in biological samples when acute 
poisoning outbreaks occur.

3.3 Cancer

Ecological studies in the former 
Transkei region of South Africa 
showed that both F. verticillioides 
and fumonisin contamination of 
maize were positively correlated 
with oesophageal cancer incidence 
rates (Marasas, 2001; IARC, 2002). 

Similar correlations have been 
reported in China (Sun et al., 2007). 
Other reports have associated 
maize consumption per se with 
high oesophageal cancer incidence 
rates but did not consider fumonisin 
exposure specifically (Franceschi 
et al., 1990). In these studies, other 
fungi and their mycotoxins were 
generally also present, and to date 
no analytical studies have been 
conducted that specifically link FB1 
to human cancer at any organ site 
(IARC, 1993, 2002; WHO, 2001).

Based on the disruption of 
sphingolipid biosynthesis mentioned 
above, the serum sphinganine-to-
sphingosine ratio was used as an 
exposure biomarker in a nested 
case–control study of oesophageal 
cancer in China (Abnet et al., 2001), 
but no association was found between 
biomarker levels and cancer risk. One 
study conducted in China did report 
that the sphinganine-to-sphingosine 
ratio in urine was significantly 
increased in males estimated to have 
consumed > 110 µg/kg bw/day of FB1  
(Qiu and Liu, 2001). However, 
in all subsequent reports, no 
association was observed between 
sphingoid bases or sphinganine-
to-sphingosine ratios in the plasma 
and urine and individual fumonisin 
exposure, suggesting that these 
biomarkers are not sufficiently 
sensitive for monitoring exposure 
in human populations (Nikièma et 
al., 2004; van der Westhuizen et al., 
2010; Xu et al., 2010).

Many risk factors exist for the 
development of oesophageal cancer. 
These differ among geographical 
regions with respect to demography, 
ethnicity, genetic susceptibility, 
cultural practices, and socioeco-
nomic and nutritional status. The use 
of home-grown maize as one of the 
main dietary staples, coupled with 
an underlying poor socioeconomic 
status, could implicate fumonisins 
as a contributing factor in the 

development of oesophageal cancer. 
However, confounding by other risk 
factors and the possible interactions 
of fumonisins with other mycotoxins 
should be considered in future studies.

Some experimental studies have 
reported a synergistic interaction 
between AFB1 and FB1 in the 
development of liver cancer (Carlson 
et al., 2001; Gelderblom et al., 2002). 
Perhaps due to the focus on 
oesophageal cancer, the role 
of fumonisins in cancer in other 
organs has been largely unexplored. 
However, given the interactions found 
experimentally, the co-contamination 
of crops by aflatoxins and fumonisins, 
and the fact that both toxins occur in 
populations with a high prevalence of 
HBV infection, a role for fumonisins 
in HCC is plausible. Some ecological 
correlation studies provide support 
for this hypothesis (Ueno et al., 1997; 
Li et al., 2001; Sun et al., 2007). The 
possible interaction between various 
mycotoxins (fumonisins, aflatoxins, 
trichothecenes) and the microcystins 
B (algal toxins) in the development 
of HCC merits more investigation. 
Interactions of fumonisins with dif-
ferent dietary constituents could also 
have an impact on the toxicological 
effects (Gelderblom et al., 2004).

IARC has concluded that there is 
inadequate evidence in humans for the 
carcinogenicity of toxins derived from 
F. verticillioides (as F. moniliforme), 
leading to a classification of Group 
2B, possibly carcinogenic to humans 
(IARC, 1993). FB1 was also classified 
as Group 2B (IARC, 2002) (Table 6.1).

3.4 Neural tube defects

Animal studies have demonstrated 
that fumonisin exposure can cause 
neural tube defects, possibly 
through the disruption of sphingo-
lipid biosynthesis and consequent 
depletion of sphingolipids, which 
are critical for lipid raft functions, 
specifically folate processing via 
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the high-affinity folate transporter 
(Stevens and Tang, 1997; Sadler et 
al., 2002; Gelineau-van Waes et al., 
2005). Neural tube defects are known 
to be associated with reduced folate 
levels, and cell membrane disruption 
induced by fumonisins could lead to 
reduced folate absorption through 
damage to the folate receptors on 
the membrane (Marasas et al., 2004). 
More recently, elevation in sphingoid 
base 1-phosphates induced by 
fumonisins has been implicated in the 
induction of neural tube defects in mice 
(Gelineau-van Waes et al., 2009).

A possible link between human 
neural tube defects and fumonisin 
consumption was suggested when 
a high rate of neural tube de-
fects was recorded in babies of 
Mexican American women living 
in Texas who conceived during 
1990–1991 (Hendricks, 1999), 
soon after the outbreaks of equine 
leukoencephalomalacia and porcine 
pulmonary oedema that occurred 
in 1989–1990 in the USA (Ross 
et al., 1991). In the border region 
of Texas, exposure to fumonisins 
may be elevated due to frequent 
consumption of contaminated maize.

In a case–control study in this 
region of Texas (Missmer et al., 
2006), moderate tortilla consumption 
in the first trimester of pregnancy was 
associated with an increased risk of 
neural tube defects compared with 
low consumption. However, high 
consumption was not associated 
with increased risk. A similar 
result was found using estimates 
for fumonisin intake from tortillas, 
whereas an increased sphinganine-
to-sphingosine ratio was associated 
with increased risk, apart from the 
highest category.

High incidence rates of neural 
tube defects have been recorded in 
rural areas of Mpumalanga Province, 
South Africa, and in the Umzimkulu 
district of the former Transkei region in 
Eastern Cape Province, South Africa 

(Ncayiyana, 1986; Venter et al., 1995); 
in Hebei Province, China (Moore et 
al., 1997; Marasas et al., 2004); and 
in Guatemala (Marasas et al., 2004) 
and Mexico, all areas where large 
quantities of maize are consumed.

3.5 Occupational exposure

There are no reports of occupational 
exposure to fumonisin and adverse 
health effects.

4. Ochratoxin A

Human exposure to ochratoxin A 
(OTA) occurs principally in Europe and 
Canada, where it comes from eating 
foods made from barley and wheat 
in which Penicillium verrucosum 
has grown. Minor sources include 
meat, especially pork, from animals 
fed contaminated grain. In tropical 
and subtropical countries, OTA 
consumption is much lower, resulting 
from contamination due to growth 
of Aspergillus carbonarius and, less 
commonly, A. niger in coffee, cocoa 
and cocoa products, and dried fruit, 
and sometimes in cereals, including 
sorghum, maize, and millet (see 
Chapter 1).

OTA has been the subject of 
an Environmental Health Criteria 
document (WHO, 1990) and JECFA 
evaluations (WHO, 1991, 2001, 2002, 
2007, 2008). JECFA noted that neither 
a conclusive association between 
OTA intake and human cancer nor 
the mechanism by which OTA is 
carcinogenic in animals has been 
established. JECFA has confirmed 
a provisional tolerable weekly intake 
(PTWI) for OTA of 100 ng/kg bw/week 
(WHO, 2001, 2008). It is noteworthy 
that risk assessment indicated that 
acute toxicity of OTA occurred in 
animals at lower levels than did long-
term effects such as carcinogenicity, 
so this PTWI is based on acute 
toxicity.

4.1 Mechanisms

Recent reviews have extensively 
summarized evidence on the 
absorption, distribution, metabolism, 
and mechanisms of action of OTA 
(Pfohl-Leszkowicz and Manderville, 
2007; Marin-Kuan et al., 2008; Mally 
and Dekant, 2009). Wide species 
differences have been reported in 
the serum half-life of OTA in vivo. 
In humans, the elimination of OTA 
follows a two-phase pattern, a fast 
excretion followed by a slow clearing, 
with a calculated plasma half-life of 
35 days. Even infrequent exposure 
(consumption of contaminated food 
once a week or even once a month) 
can result in persistent blood levels 
of OTA (Studer-Rohr et al., 2000). 
Blood samples from healthy people in 
European countries show OTA levels 
of 0.1–40 ng/mL (WHO, 2008). The 
parent molecule is the major compound 
found in blood, whereas ochratoxin α is 
the major component detected in urine 
(Studer-Rohr et al., 2000).

OTA is absorbed from the 
gastrointestinal tract in mammals and 
becomes strongly bound to plasma 
proteins (predominantly albumin) in 
blood, whereby it is distributed to the 
kidneys, with lower concentrations 
in liver, muscle, and fat. OTA is 
metabolized by several different 
CYP enzymes, depending on the 
species and tissue involved. In cells 
expressing human CYP enzymes, the 
main metabolite was 4(R)-hydroxy-
OTA formed by CYP1A2, 2B6, 2C9, 
2D6, and 2A6, whereas the 4(S)-
hydroxy-OTA derivative was formed 
by only CYP2D6 and 2B6 (Pfohl-
Leszkowicz and Manderville, 2007). 
Identified OTA metabolites include 
not only these two hydroxylated 
species but also 10-hydroxy-OTA 
and ochratoxin α, which is formed 
by hydrolysis of the peptide bond in 
OTA and thus lacks the phenylalanine 
moiety and consequently is non-
toxic. OTA may also be metabolized 
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Mycotoxin Monographs volume 
(year)

Degree of evidence of 
carcinogenicity Overall evaluation of 

carcinogenicity to humansa

In humans In animals

Aflatoxins, naturally 
occurring mixtures of

56 (1993), 82 (2002) Sufficient Sufficient Group 1

Aflatoxin B1 56 (1993) Sufficient Sufficient

Aflatoxin B2 56 (1993) Limited

Aflatoxin G1 56 (1993) Sufficient

Aflatoxin G2 56 (1993) Inadequate

Aflatoxin M1 56 (1993) Inadequate Sufficient Group 2B

Toxins derived 
from Fusarium 
verticillioidesb

56 (1993) Inadequate Sufficient Group 2B

Fumonisin B1 82 (2002) Inadequate Sufficient Group 2B

Fumonisin B2 56 (1993) Inadequate

Fusarin C 56 (1993) Limitedc

Ochratoxin A 56 (1993) Inadequate Sufficient Group 2B

Toxins derived from 
Fusarium graminearum, 
F. culmorum, and 
F. crookwellense

56 (1993) Inadequate Group 3

Deoxynivalenol 56 (1993) Inadequated

Nivalenol 56 (1993) Inadequate

Zearalenone 56 (1993) Limitede

Citrinin 40 (1986) Inadequate Limitedf Group 3

Patulin 40 (1986) Inadequate Inadequate Group 3

Toxins derived 
from Fusarium 
sporotrichioides

56 (1993) Inadequate 
(no data)

Group 3

T-2 toxin 56 (1993) Limitedg

Table 6.1. IARC Monographs evaluations of carcinogenic hazards of mycotoxins to humans

a Group 1, carcinogenic to humans; Group 2A, probably carcinogenic to humans; Group 2B, possibly carcinogenic to humans; Group 3, not classifiable as to its carci-
nogenicity to humans; Group 4, probably not carcinogenic to humans.
b Formerly known as Fusarium moniliforme. Fumonisin B1 is also produced by additional Fusarium species.
c Fusarin C caused marginal increases in incidences of papillomas and carcinomas of the oesophagus and forestomach when given by gavage to mice and rats.
d More recent carcinogenicity studies of deoxynivalenol in mice have been negative (Iverson et al., 1995; Lambert et al., 1995) and reinforce the conclusion of the 1993 
IARC Working Group that there is inadequate evidence in experimental animals for the carcinogenicity of deoxynivalenol.
e Zearalenone caused increased incidences of hepatocellular and pituitary tumours in mice of both sexes when given in the diet, but no carcinogenic effect was seen 
in rats.
f Citrinin caused benign epithelial tumours (clear cell adenomas) of the kidney in male rats in one experiment. Whereas this study (Arai and Hibino, 1983) was unequivo-
cally positive, other studies in other strains of rat at lower doses were negative (IARC, 1986). A single positive study with only benign tumours as findings is considered 
limited evidence of carcinogenicity by the IARC Monographs criteria.
g T-2 toxin caused increased incidences of liver cell tumours and lung tumours in male mice when given in the diet.
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by cyclo-oxygenase, lipoxygenase, 
and epoxygenase, particularly in 
extrahepatic organs such as the 
kidney, to yield reactive oxygen 
species, which in turn may result in 
oxidative damage.

OTA competitively inhibits phenyl-
alanine-tRNA ligase, resulting in 
inhibition of protein synthesis as 
well as RNA and DNA synthesis. In 
animals, acute toxic effects of OTA 
can be inhibited by co-administration 
of phenylalanine (FAO/WHO/UNEP, 
1999).

The formation of DNA adducts by 
OTA and their potential role in cancer 
induction has been investigated 
(Mally and Dekant, 2009; Mantle 
et al., 2010), and hypotheses for 
the formation include direct adduct 
formation induced by OTA after 
metabolic activation via an OTA 
phenoxy radical and indirect DNA 
damage resulting from oxygen radical 
formation as mentioned above (Pfohl-
Leszkowicz and Manderville, 2007).

The concentration of OTA-
specific transporters in tissues has 
been proposed to explain the relative 
species, sex, and target organ 
sensitivities to OTA toxicity (reviewed 
in Dietrich et al., 2005). Another 
contributor to selective sensitivity is 
the extent of albumin binding, which 
markedly decreases the uptake of 
OTA by transporters (Bow et al., 
2006). Mechanisms that account for 
the toxicity and carcinogenicity of 
OTA without invoking the production 
of OTA DNA adducts have also 
been proposed (reviewed in Mally 
and Dekant, 2009) and typically 
involve alterations in expression 
of genes regulating rates of cell 
proliferation and cell death. Potential 
biomarkers of effect in target tissues 
include the development of unique 
gene expression profiles specific 
to alterations of gene expression 
induced by OTA. Genes include 
those involved in cellular defence, 
cell proliferation, and cell death 

(reviewed in Marin-Kuan et al., 
2008; Adler et al., 2009; Mally and 
Dekant, 2009) and in oxidative stress 
(Arbillaga et al., 2008; Cavin et al., 
2009). Changes in urinary metabolite 
profiles, obtained using GC-MS, 
LC-MS, and [1H]-NMR, have been 
used as a metabonomic approach to 
assess the potential of these changes 
for development of a predictive model 
for OTA toxicity (Sieber et al., 2009). 
Although the results were not specific 
for OTA, they were indicative of 
kidney damage and general toxicity, 
and this approach could prove to be 
of value for discovery of more specific 
mechanisms unique to OTA.

4.2 Acute toxicity

The kidney is the major target organ 
for adverse effects from OTA (Pfohl-
Leszkowicz and Manderville, 2007; 
WHO, 2002). Short-term toxicity 
studies in mice, rats, dogs, and 
pigs have shown both time- and 
dose-dependent development of 
progressive nephropathy. Significant 
sex and species differences exist, 
as well as differences due to route 
of administration. Other toxic effects 
include cardiac and hepatic lesions in 
rats, lesions of the gastrointestinal tract 
and lymphoid tissues in hamsters, 
myelotoxicity in mice, and kidney 
lesions in chickens. Pigs appear 
to be the most sensitive species to 
the nephrotoxic effects; the lowest-
observed-effect level (8 µg/kg bw) 
was used as the basis for establishing 
the PTWI.

A great deal of work has been 
undertaken recently to elucidate 
the likely mechanisms of toxicity. 
Degenerative changes in the prox-
imal tubules of the kidney have been 
the most common effects seen in 
animal species studied. However, it 
has not been possible to determine 
just what acute effects, if any, OTA 
has on humans (WHO, 2008).

4.3 Cancer

Evidence for the carcinogenicity 
of OTA is principally from studies 
in experimental animals. OTA is 
carcinogenic to laboratory rats and 
mice, causing HCC in mice and 
kidney carcinomas in mice and rats. 
The mechanism of carcinogenic 
action has not been firmly 
established.

Reports of increased cancer risk 
in humans who consumed OTA have 
been limited to descriptive studies. 
No analytical epidemiological 
studies were available to IARC at 
the time of the evaluation of OTA 
(IARC, 1993). The descriptive 
studies generally focused on the 
co-occurrence of Balkan endemic 
nephropathy, a fatal chronic renal 
disease, and higher than expected 
rates of urinary tract tumours, 
including tumours of the kidney and 
urinary bladder, in Bulgaria and 
other Balkan countries. Available 
studies have not established that this 
increased cancer incidence was due 
to exposure to OTA.

IARC has concluded that there 
is sufficient evidence that OTA is 
carcinogenic in experimental animals 
but inadequate evidence that OTA 
increases cancer risk in humans. 
OTA has therefore been classified 
as Group 2B, possibly carcinogenic 
to humans (IARC, 1993) (Table 6.1).

4.4 Occupational exposure

OTA is found in the spores of P. 
verrucosum on grains and also A. 
carbonarius as well as some strains 
of A. niger on grapes and coffee 
beans. Some occupational studies 
in Europe reported elevated OTA 
levels in plasma in workers exposed 
to grain dust (Pfohl-Leszkowicz and 
Manderville, 2007). From what was 
inferred to be a massive exposure 
to OTA from working in a confined 
space with grain contaminated by 
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A. ochraceus, a farmer developed 
acute renal disease after temporary 
respiratory distress (Di Paolo et 
al., 1993). Only limited estimates 
of inhalation exposure to OTA from 
occupational exposure are available 
(Mayer et al., 2007).

5. Deoxynivalenol

Deoxynivalenol (DON) is produced in 
cereals, especially wheat, as the result 
of growth of Fusarium graminearum 
and related species (see Chapter 1). 
JECFA has established a PMTDI for 
DON of 1 μg/kg bw/day on the basis 
of the NOEL for body weight reduction 
in mice in a 2-year bioassay and a 
safety factor of 100 (WHO, 2001, 
2011). The NOEL in mice was 100 μg/
kg bw/day (Iverson et al., 1995).

5.1 Mechanisms

DON is directly toxic via an 
epoxide moiety and thus does 
not require metabolic activation to 
exert its biological effects. Low-
level trichothecene exposure in 
animal models has been shown to 
modulate the expression of several 
cytokines and chemokines that are 
key regulators of immune function 
(Pestka, 2008). Exposure to DON 
causes the upregulation of the 
mRNAs responsible for production 
of cytokines, chemokines, and other 
immune-related proteins and can 
also induce gene transcription. In 
addition, DON modulates numerous 
physiological processes controlled 
by mitogen-activated protein kinases 
(MAPKs). These include processes 
controlling cell growth, differentiation, 
and apoptosis, which are all crucial 
for signal transduction in the immune 
response (Pestka, 2008). Thus, in ad-
dition to altered cytokine expression, 
alterations in MAPK expression are 
likely to also contribute to the immune 
dysregulation and toxicity of DON and 
other trichothecenes. Also associated 

with MAPK activation by DON is the 
activation of processes leading to 
the ribotoxic stress response, which 
is induced by other translational 
inhibitors that, like DON, bind to or 
damage a specific region at the 3′ 
end of the 28S rRNA. The ribosome 
plays a key role in the ribotoxic stress 
response by serving as scaffolding for 
interactions between various MAPKs 
(Pestka, 2008).

DON toxicity studies have recently 
revealed several possible approaches 
for developing useful biomarkers of its 
effects. For example, DON exposure in 
mice results in upregulation of several 
suppressors of cytokine signalling. 
These suppressors are known to 
impair growth hormone signalling 
(Pass et al., 2009). Impairment of 
the growth hormone axis precedes 
the growth retardation in the mouse 
induced by DON (Amuzie and Pestka, 
2010). Oral DON perturbs the growth 
hormone axis by suppressing two 
growth-related proteins, IGFALS and 
IGF1. Thus, reduced expression of 
these two proteins in conjunction with 
elevated urinary DON levels could 
potentially serve as biomarkers of 
effect.

Detoxification varies by species; 
metabolism by gut microflora 
generates a de-epoxy metabolite 
(DOM-1), and conjugation to gluc-
uronic acid is catalysed by UDP-
glucuronyltransferase (reviewed by 
Pestka and Smolinski, 2005; Wu et al., 
2007). In humans, DON-glucuronide 
has been reported in urine samples in 
several studies (Turner et al., 2008a, 
2008b, 2008c). In contrast, information 
on DOM-1 is limited. An absence of 
de-epoxidase activity in a small series 
of human faecal samples was reported 
(Sundstøl-Eriksen and Pettersson, 
2003), whereas, in apparent contrast, 
a study in France of farmers exposed 
to grain handling reported detection 
of DOM-1 in a proportion of subjects 
(Turner et al., 2010).

5.2 Acute toxicity

In animals, DON has a wide range of 
proven toxicities, including feed refusal, 
decreased weight gain, gastroenteritis, 
cardiotoxicity, teratogenicity, and 
immunotoxicity (Rotter et al., 1996; 
Meky et al., 2001; Pestka et al., 
2004; Pestka and Smolinski, 2005; 
Gray and Pestka, 2007; Amuzie and 
Pestka, 2010).

DON can cause acute poisoning in 
humans, where severe gastrointestinal 
toxicity is the primary symptom. 
Consumption of cereals contaminated 
with DON has been associated with 
numerous poisoning incidents in China 
between 1961 and 1991 (see Pestka 
and Smolinski, 2005) and a major 
outbreak in India (Bhat et al., 1989); 
in some of these episodes, tens of 
thousands of individuals were affected. 
In these outbreaks, symptoms were 
analogous to those observed in 
animals, notably a rapid onset, nausea, 
vomiting, abdominal pain, diarrhoea, 
headache, dizziness, and fever. In an 
episode in the Kashmir valley, DON 
levels in wheat ranged from 0.4 mg/
kg to 8.4 mg/kg (Bhat et al., 1989), and 
in China DON poisoning was linked 
to wheat contaminated at DON levels 
between 0.3 mg/kg and 100 mg/kg 
(Pestka and Smolinski, 2005). These 
data suggest that acute toxicity may 
occur at exposures estimated in the 
low µg/kg bw/day range.

5.3 Cancer

Minimal data are available on the 
carcinogenicity of DON in either 
humans or experimental animals.

A 2-year bioassay in B6C3F1 mice 
of both sexes fed DON in the diet at 
concentrations of 0, 1, 5, or 10 mg/kg 
showed no increase in the incidence 
of pre-neoplastic or neoplastic lesions 
in the liver or other tissues (Iverson 
et al., 1995). DON was also tested 
for its ability to initiate or promote 
skin tumours when applied topically 
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to the skin of female SENCAR mice, 
with negative results (Lambert et 
al., 1995). No studies have reported 
on the carcinogenicity of DON in 
humans. Oesophageal cancer in 
humans has been anecdotally linked 
to consumption of grains infected 
with Fusarium species that produce 
DON and other mycotoxins, but no 
analytical epidemiological studies link 
DON to the occurrence of any human 
cancer (IARC, 1993).

IARC has concluded that there 
is inadequate evidence in both 
humans and experimental animals 
for the carcinogenicity of DON. 
DON and other toxins derived from 
F. graminearum, F. culmorum, and 
F. crookwellense have therefore 
been categorized as Group 3, not 
classifiable as to their carcinogenicity 
to humans (IARC, 1993) (Table 6.1).

5.4 Occupational exposure

Inhalation exposure to DON has been 
the subject of several health hazard 
evaluations. Fusarium head blight in 
wheat resulting from infection by F. 
graminearum or F. culmorum begins 
at the outside of the grain head and 
moves inward. As a result, most DON 
is found in the outer layers of the kernel 
and the chaff (Miller, 1994b; Snijders, 
1994). Grain dusts can contain quite 
high concentrations of DON and 
sometimes of other mycotoxins, which 
are not always present in the kernels. 
For example, other fungi, including F. 
sporotrichioides, can grow on what 
becomes the chaff so that small 
amounts of T-2 toxin can be present.

Air samples collected in grain 
elevators in Canada contained a 
mean airborne concentration of 37 
ng/m3 DON and a maximum of 2.59 
μg/m3 DON. Airborne dust from the 
same source contained 0.5–5.8 mg/
kg DON, 1 mg/kg T-2 toxin, and low 
levels of HT-2 toxin (De Mers, 1994). 
Concentrations of dusts, fungal 
spores, and DON associated with 

handing of grain on farms in Finland, 
including grain drying, milling, and 
cattle feeding, were similar to those 
reported from Canada (Lappalainen 
et al., 1996).

Studies of DON concentrations 
during grain handling in Germany 
reported a median concentration of 
2 ng/m3 and a maximum of 703 ng/
m3 (Mayer et al., 2007). In France, 
urinary biomarkers for DON (DON, 
DOM-1) were higher in active farmers, 
particularly those from larger farms, 
than in retired farmers, whose 
exposure was from diet (Turner et al., 
2010).

Epidemiological studies have 
been conducted in Norway relating 
to occupational exposures of male 
and female farmers to mycotoxins. 
Norwegian grains (wheat, oats, 
and barley) are affected mainly by 
Fusarium head blight, and various 
trichothecenes and culmorins have 
been reported as common (Langseth 
and Elen, 1996; Ghebremeskel 
and Langseth, 2001). A longitudinal 
survey of farmers over more than two 
decades suggested a relationship 
between grain farming and mid-
pregnancy deliveries in the families of 
farmers, possibly linked to mycotoxins 
(Kristensen et al., 1997). Small 
increased relative risks were observed 
in several cancers in female but not 
male farmers (Kristensen et al., 2000).

6. Zearalenone

Zearalenone (ZEA) is a non-steroidal 
estrogenic mycotoxin. It is produced 
principally by F. graminearum and 
related species, and consequently 
occurs wherever DON occurs, most 
notably as a contaminant of maize, 
wheat, barley, oats, rye, sorghum, 
millet, and rice. Distribution of ZEA 
is worldwide (Zinedine et al., 2007). 
Estimates of human exposure from 
dietary sources are generally in the 
range of 1–30 ng/kg bw/day (Zinedine 
et al., 2007). JECFA has established 

a PMTDI for ZEA of 0.5 µg/kg bw/day 
based on the NOEL for hormonal 
effects in pigs (WHO, 2001).

6.1 Mechanisms

ZEA is metabolized during ab-
sorption by the intestinal tissue in 
pigs. Metabolism involves reduction 
of the 6-keto group of ZEA and results 
in formation of α- and β-zearalenol 
as well as, upon further reduction, 
α- and β-zearalanol, all of which can 
be conjugated in turn to glucuronic 
acid (WHO, 2001). Few data are 
available in relation to metabolism in 
humans. Studies of liver microsomes 
in vitro have suggested a high rate of 
α-zearalenol production compared 
with that of β-zearalenol in pigs and 
humans, a point of importance because 
of the greater relative estrogenicity 
of α-zearalenol compared with ZEA 
(Fink-Gremmels and Malekinejad, 
2007). In other words, the formation 
of α-zearalenol may be considered a 
bioactivation step contributing to the 
estrogenic effects of ZEA.

ZEA and its metabolites can bind to 
estrogen receptors, resulting in various 
changes consequent to binding to 
elements in the nucleus responsive 
to estrogens. In addition, however, 
ZEA is a competitive substrate for 
enzymes involved in steroid synthesis 
and metabolism and therefore has 
the potential to act as an endocrine 
disruptor. ZEA can activate the 
pregnane X receptor by displacement 
of a co-repressor and recruitment 
of co-activators (Ding et al., 2006). 
Thus, ZEA could have widespread 
effects on gene expression as a result 
of the modified activity of this nuclear 
transcription factor.

6.2 Acute toxicity

ZEA is considered to be of relatively 
low acute toxicity. No reports have 
appeared of acute poisoning due to 
ZEA in humans.
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by mycotoxins. Inhalation of silica, 
allergens, mycotoxins, and triple-
helical glucans contained in airborne 
dusts is a potential health risk, rarely 
from systemic exposure but from 
effects on lung biology. Outdoor work 
is normally not a problem, except 
when handling the most damaged 
maize, small grains, and groundnuts. 
In contrast, handling contaminated 
grains, especially damaged grains, in 
any confined space (e.g. grain storage, 
storage bin cleaning, animal feeding 
in barns, indoors) carries a more 
significant risk.

The allergic disease hyper-
sensitivity pneumonitis, also called 
extrinsic allergic alveolitis or farmer’s 
lung, develops through repeated 
exposure to allergens. Dust from any 
mouldy crop, such as straw, maize, 
small grains, or groundnuts, can cause 
the condition. Symptoms may include 
shortness of breath, a dry cough, a 
sudden general feeling of sickness, 
fevers and chills, a rapid heart rate, 
and rapid breathing. The symptoms 
are serious, and once an allergic 
reaction begins, the person will always 
have the potential for symptoms with 
exposure to the offending fungi. Long-
term exposure can cause permanent 
lung damage, physical disability, or 
even death (Sorenson and Lewis, 
1996; Schenker et al., 1998; Girard et 
al., 2009).

The reproductive structures of 
many fungi are known to contain 
mycotoxins or low-molecular-weight 
toxic compounds, often in high 
concentrations (Sorenson, 1999). Most 
is known about the fungi that produce 
toxins important in agriculture. The 
conidia of A. flavus, A. parasiticus, F. 
graminearum, and F. sporotrichioides 
contain     very     high     concentrations 
of   toxins,  particularly   in   the   case 
of the species that produce aflatoxins. 
The spores of the two Aspergillus 
species have been reported to contain 
100–1100 µg aflatoxin/g, or approx-
imately 10–4 moles (Wicklow and 

Shotwell, 1983). Several interesting 
toxins have been found in sclerotia 
of various Aspergillus species, again 
at higher concentrations than occur 
either in culture or in affected crops 
(Gloer et al., 1988; Wicklow et al., 
1988), some of which are thought to be 
present in conidia along with kojic acid 
and other A. flavus toxins. Spores of F. 
graminearum contained 30 µg/g of T-2 
toxin and those of F. sporotrichioides 
50 µg/g (both approximately 
10–5 moles). The spores of many 
species of toxigenic fungi have been 
demonstrated to contain mixtures of 
the toxins associated with the species.

The high-molecular-weight toxic 
compound present in spores and in 
spore and mycelial fragments from 
the anamorphic Trichocomaceae (i.e. 
Penicillium, Aspergillus, and related 
hyphomycetes) is (1→3)-β-D-glucan 
in the triple-helical form (Rand et al., 
2010). In the species tested so far, the 
concentration is 1–11 pg/spore (Foto et 
al., 2004; Iossifova et al., 2008).

Inhalation of intact spores 
leads to little net exposure because 
their relatively large size enables 
entrapment and removal by lung 
defence mechanisms. However, in 
outdoor air, exposure is primarily to 
spore and mycelial fragments (Green 
et al., 2012) and to dusts (particulate 
matter < 2.5 µm in diameter), which 
efficiently penetrate deep into the lung 
(Buczaj, 2008; see Miller et al., 2010). 
Inhalation of toxins affects macrophage 
function and other aspects of lung 
biology. Pure compounds tested 
for effects in macrophages include 
fumonisin, aflatoxin (Liu et al., 
2002), T-2 toxin (Sorenson et al., 
1986), and the aflatoxin precursor 
sterigmatocystin (Miller et al., 2010). 
DON has been tested for effects in 
peritoneal macrophages (Ayral et al., 
1992).

6.3 Cancer

ZEA resulted in an increased 
incidence of liver cell and pituitary 
tumours in mice, consistent with a 
hormonal mode of carcinogenic action 
(IARC, 1993). No carcinogenic effect 
was seen in rats, however, and overall 
animal carcinogenicity data for ZEA 
were considered limited (IARC, 1993). 
No studies of human carcinogenicity 
have been reported for ZEA (Table 6.1).

ZEA was measured in endometrial 
tissue from a small group of women 
with endometrial adenocarcinomas, 
endometrial  hyperplasia,  or  normal 
proliferative endometria (Tomaszewski 
et al., 1998). ZEA in blood samples 
has also been investigated in some 
small studies of early onset of puberty 
in Hungary (Szuets et al., 1997) and in 
Italy (Massart et al., 2008). In the study 
in Italy, there was a suggestion that 
elevated serum ZEA and α-zearalenol 
levels were associated with early 
puberty in 6 of the 17 girls examined 
from a rural area, but no positive 
samples were seen in the 15 patients 
from an urban area.

6.4 Occupational exposure

No studies of occupational exposure of 
humans have been reported for ZEA.

7. Occupational exposures to 
grain and groundnut dusts

Grain dusts present an occupational 
hazard when protection of workers 
is inadequate, and several health 
consequences are possible, including 
the allergic disease hypersensitivity 
pneumonitis, endotoxicosis, and 
organic dust toxic syndrome (Rylander 
and Jacobs, 1994; Sorenson and 
Lewis, 1996). Endotoxicosis is a result 
of exposure to bacterial endotoxin, 
and organic dust toxic syndrome (also 
called pulmonary mycotoxicosis, toxic 
organic dust syndrome, or grain fever), 
as far as is known, is not caused 
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